UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 8-K

CURRENT REPORT

Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event Reported): January 9, 2023

Scholar Rock Holding Corporation

(Exact Name of Registrant as Specified in Charter)

Delaware (State or Other Jurisdiction of Incorporation)

001-38501 (Commission File Number)

82-3750435 (I.R.S. Employer Identification Number)

301 Binney Street, 3rd Floor, Cambridge, MA 02142

(Address of Principal Executive Offices) (Zip Code)

(857) 259-3860

(Registrant's telephone number, including area code)

(Former name or former address, if changed since last report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

	Written communications	pursuant to Rule	425 under the Securities A	Act (17	CFR 230.425	i)
--	------------------------	------------------	----------------------------	---------	-------------	------------

☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

□ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))
□ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

Title of each class	Trading Symbol(s)	Name of each exchange on which registered
Common Stock, par value \$0.001 per share	SRRK	The Nasdaq Global Select Market

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (17 CFR §230.405) or Rule 12b-2 of the Securities Exchange Act of 1934 (17 CFR §240.12b-10). 2). Emerging growth company ⊠

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act. \boxtimes

Item 7.01. Regulation FD Disclosure.

On January 3, 2022, Scholar Rock Holding Corporation (the "Company") announced that management will present at the 41st Annual J.P. Morgan Healthcare Conference on Tuesday, January 10, 2023 at 1:30 p.m. PT (4:30 p.m. ET). A copy of the presentation slide deck that will be presented is being furnished as Exhibit 99.1 to this report on Form 8-K. A live webcast of the presentation may be accessed by visiting the Investors & Media section of the Scholar Rock website at http://investors.scholarrock.com

The information in this Item 7.01 and Exhibit 99.1 attached hereto is intended to be furnished and shall not be deemed "filed" for purposes of Section 18 of the Securities Exchange Act of 1934 (the "Exchange Act") or otherwise subject to the liabilities of that section. It may only be incorporated by reference in another filing under the Exchange Act or the Securities Act of 1933, as amended, if such subsequent filing specifically references the information furnished pursuant to Item 7.01 and Exhibit 99.1 of this Current Report on Form 8-K.

On January 9, 2023, the Company issued a press release announcing a corporate update and highlighting priorities for 2023. A copy of this press release is being filed herewith as Exhibit 99.2 to this Current Report on Form 8-K.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits

Exhibit No.

Description

Presentation distributed by Scholar Rock Holding Corporation dated January 9, 2023, furnished hereto.

Press Release issued by Scholar Rock Holding Corporation dated January 9, 2023.

Cover Page Interactive Data File (embedded within the Inline XBRL document)

SIGNATURE

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Scholar Rock Holding Corporation

Date: January 9, 2023

By: /s/ Junlin Ho Junlin Ho General Counsel & Corporate Secretary

Deep Insights Advancing Impactful Medicines

January 2023

Disclaimers

Various statements in this presentation concerning the future expectations, plans and prospects of Scholar Rock, Inc. ("Scholar Rock"), including without limitation, Scholar Rock's expectations regarding its strategy, its product candidate selection and development timing, including timing for the initiation of and reporting results from its clinical trials for apitegromab, SRK-181, and other product candidates and indication selection and development timing, its cash runway, the ability of any product candidate to perform in humans in a manner consistent with earlier nonclinical, preclinical or clinical trial data, and the potential of its product candidates and proprietary platform. The use of words such as "may," "could," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify such forward-looking statements for the purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995. All such forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, without limitation, that preclinical and clinical data, including the results from the Phase 2 trial of apitegromab or Part A of the Phase 1 trial of SRK-181, are not predictive of, may be inconsistent with, or more favorable than, data generated from future clinical trials of the same product candidate, including the Phase 3 clinical trial of apitegromab in SMA and Part B of the Phase 1 clinical trial of SRK-181, respectively, Scholar Rock's ability to provide the financial support, resources and expertise necessary to identify and develop product candidates on the expected timeline, the data generated from Scholar Rock's nonclinical and preclinical studies and clinical trials, information provided or decisions made by regulatory authorities, competition from third parties that are developing products for similar uses, Scholar Rock's ability to obtain, maintain and protect its intellectual property, the success of Scholar Rock's current and potential future collaborations, Scholar Rock's dependence on third parties for development and manufacture of product candidates including, without limitation, to supply any clinical trials, Scholar Rock's ability to manage expenses and to obtain additional funding when needed to support its business activities and establish and maintain strategic business alliances and new business initiatives, and the impacts of current macroeconomic and geopolitical events, including changing conditions from the COVID-19 pandemic, hostilities in Ukraine, increasing rates of inflation and rising interest rates, on business operations and expectations, as well as those risks more fully discussed in the section entitled "Risk Factors" in Scholar Rock's Quarterly Report on Form 10-Q for the quarter ended September 30, 2022, as well as discussions of potential risks, uncertainties, and other important factors in Scholar Rock's subsequent filings with the Securities and Exchange Commission. Any forward-looking statements represent Scholar Rock's views only as of today and should not be relied upon as representing its views as of any subsequent date. All information in this press release is as of the date of the release, and Scholar Rock undertakes no duty to update this information unless required by law.

Apitegromab and SRK-181 are investigational drug candidates under evaluation. Apitegromab and SRK-181 have not been approved for any use by the FDA or any other regulatory agency and the safety and efficacy of apitegromab and SRK-181 have not been established.

© Scholar Rock, Inc. All rights reserved.

Scholar Rock:

Transforming
Patient Lives,
Targeting High
Unmet Medical
Need

Revolutionary Platform

- · Global leader in TGFB superfamily biology
- Targeting the latent forms of growth factors
- Exquisite selectivity to deliver differentiated therapeutic profiles

Neuromuscular and Beyond

- Rich preclinical pipeline focused on high unmet patient needs
- Phase 3 SAPPHIRE study underway, data readout expected in 2024
- Phase 1 POC DRAGON study underway in immuno-oncology

Positioned for Success

- Compelling proof-of-concept TOPAZ data informed Phase 3 SAPPHIRE study design
- Seasoned leadership team with track record of clinical and commercial success
- Anticipated cash runway into 2025

Strategic Optionality

- Commercial planning underway for apitegromab (SMA) in US and Europe
- Broad platform, including promising early-stage assets, provides opportunities to advance alone or in partnership

Revolutionary Approach to Regulating TGF β Superfamily Implicated in Devastating Diseases

TGFβ Superfamily: Highly Sought-After Targets

Recognized by the industry as important targets given their fundamental roles in regulating a variety of cellular processes Dysregulation plays a role in devastating diseases that have a high unmet need including:

- Neuromuscular disorders
- Fibrosis
- Oncology

Scholar Rock's R&D Platform

Transforming Medical Practice

- Selectively target the latent form of growth factors in the microenvironment of cells and tissues with uniquely designed antibodies
- Overcome the challenges that plague traditional approaches that target the "mature" growth factor, which are difficult to differentiate and lead to unintended negative effects

Robust Pipeline of Novel Product Candidates

	DISCOVERY/ PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	2023 MILESTONES
SPINAL MUSCULAR ATROPHY Apitegromab (selective anti-latent myostatin)			(ins)	SAPPHIRE	36-month TOPAZ data SAPPHIRE: LPI
IMMUNO-ONCOLOGY SRK-181 (Selective context-independent, anti-latent TGFβ-1)		PRAGON			Rolling clinical data updates
ANEMIA Selective anti-RGMc					IND-enabling studies
FIBROSIS Selective context-dependent (LTBP1 & LTBP3) anti-latent TGFβ-1					IND-enabling studies

Potential to transform the lives of patients suffering from a wide range of serious diseases, including neuromuscular disorders, oncology, and fibrosis

Leadership Team: Experienced in Drug Development and Commercialization

Jay Backstrom, MD, MPH President & CEO

30 years of clinical R&D experience, leading multiple successful regulatory

Ted Myles, MBA Chief Operating Officer & CFO

25 years of progressive experience in clinical and commercial-stage companies

Junlin Ho, JD General Counsel & Corporate Secretary

15 years of experience leading and advising life sciences companies in areas of legal and compliance

Caryn Parlavecchio Chief Human Resources Officer

25 years of experience leading HR, culture transformation, leadership development, DEI, and talent management

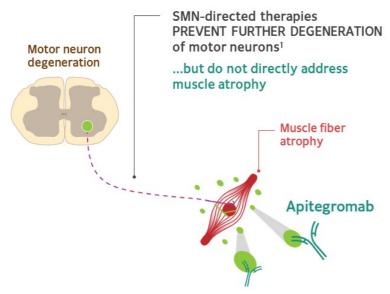
Jing Marantz, MD, PhD, MBA Chief Medical Officer

20 years of industry expertise across clinical pharmacology, neurology, hematology/oncology, and rare diseases

Mo Qatanani, PhD SVP, Research

15 years of industry experience on the strategic and operational sides of research & development

YDyne KLEXION



Apitegromab: The Next Potential Transformative Therapy for Patients with Spinal Muscular Atrophy (SMA)

Apitegromab: Potential Muscle-Directed Therapy for SMA

Apitegromab is a MUSCLE-DIRECTED APPROACH aimed at improving motor function*2,3

Myostatin is a negative regulator of skeletal muscle growth

Apitegromab is a fully human, mAb that specifically binds to proforms of myostatin and inhibits myostatin activation leading to increased muscle mass and muscle function

Strong evidence indicates upstream targeting of structurally differentiated latent myostatin avoids undesirable off-target effects

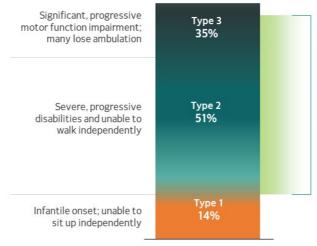
* Based on Animal Model Data; 1. Adapted from: SMA Foundation Overview. http://www.smafoundation.org/wp-content/uploads/2012/03/SMA-Overview.pdf.; Accessed April 18, 2021; 2. Long KK, et al. Hum Mol Genet. 2019;28(7):1077-1088; 3. Pirruccello-Straub M, et al. Sci Reports. 2018;8(1):2292. doi:10.1038/s41598-018-20524-9

Spinal Muscular **Atrophy**

Motor neuron impairment and loss due to SMN genetic deficiency, leading to muscle atrophy and weakness

GLOBAL DISEASE: 30,000-35,000 affected

in US and Europe alone^{1, 2, 3,4}


*TOPAZ Phase 2 trial evaluated patients with Type 2 and 3 SMA (did not include Type 1)

1. Lally et al. Orphanet Journal of Rare Diseases, 2017; 2. SMA Europe. SMATracker. About SMA. Accessed January 24. 2022. https://smatracker.eu/what-is-spinal-muscularatrophy. 3. National Organization for Rare Disorders. Spinal muscular atrophy. Accessed January 24, 2022. https://rarediseases.org/rare-diseases/spinal-muscularatrophy. 4. Cure SMA. Care Series Booklet. Accessed September 19, 2021. 2020. https://www.curesma.org/wpcontent/uploads/2020/08/08/2020 Understanding. SMA_WWeb.pdf. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Global SMA Treatment Market expected to reach \$11.4B by 2028

KBV Research and secondary Research Analysis. Global Spinal Muscular Atrophy Market Analysis (2022-2028). November 2022, p. 42

TOPAZ* 12-month results showed transformative potential in non-ambulatory Types 2 and 3 patients

>2/3 of overall patient population

Potential to Pioneer a New Treatment Era: Opportunity for Muscle-Directed Therapy to Complement SMN-Directed Therapies

PHASE 3 TRIAL DESIGN	Type 1, 2,3 1 day -12 years of age (Non-ambulatory recruited)	Type 1, 2, 3 1 month – 25 years of age (Ambulatory and Non-ambulatory recruited)	Type 1 up to 6 months of age (Non-ambulatory recruited)
PRIMARY ENDPOINT	Mean change from baseline in HFMSE at 15 months	Mean change from baseline in MFM-32 at 12 months	Ability to sit independently and event-free survival
INITIAL INDICATION [†]	Spinal Muscular Atrophy (SMA) in pediatric and adult patients	Spinal Muscular Atrophy (SMA) in pediatric and adult patients	Spinal Muscular Atrophy (SMA) in pediatric patients less than 2 years
CURRENT MARKET PENETRATION	Patients treated WW: >11,000* Revenues (LTM): \$1.7+ billion	Patients treated WW: >7000** Revenues (YTD'0922): ~CHF 793 million	Patients treated WW: >2500*** Revenues (LTM): \$ 1.4+ billion

Patients continue to experience major functional impairments despite utilization of SMN-directed therapies

*As of Biogen SPINRAZA website and 3022 financial update on 10/25/22; includes patients treated worldwide in post-marketing setting, expanded access program, and clinical trials.

**As of Roche YTD Sep'2022 financial update on 10/18/22; includes patients treated worldwide between clinical trials, commercial, and compassionate use program.

***As of Novartis 3022 financial update on 10/25/22; commercially, via managed access programs and in clinical trials

HFMSE = Hammersmith Functional Motor Scale Expanded; MFM-32 = Motor Function Measure – 32 items

[†]Refer to most current USPI

Apitegromab Offers Potential to Address Unmet Patient Need

Mean improvement in HFMSE experienced by patients with non-ambulatory Types 2/3 SMA in nusinersen Phase 3 CHERISH trial

 $HFMSE=Hammers mith Functional Motor Scale-Expanded \\ 1. Mercuri E et al.; N Engl J Med 2018; 378:625-635; DOI: 10.1056/NEJMoa1710504; cherish trial results. This third-party information is provided for background only and is not intended to convey or imply a comparison to the TOPAZ clinical trial results. \\$

Phase 2 TOPAZ Trial: Safety and Efficacy Data from First Muscle-directed Treatment Candidate in SMA

TOPAZ Age 2-12 Analysis* in Pooled Non-Ambulatory Cohorts (20mg/kg) **Transformative Potential as Add-On for Apitegromab**^{1,2}

Mean HFMSE Increase OF 4.4 POINTS

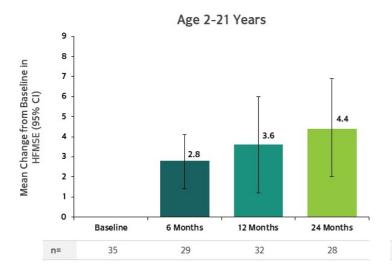
with majority experiencing ≥ 3-point increases on top of background SMN therapy

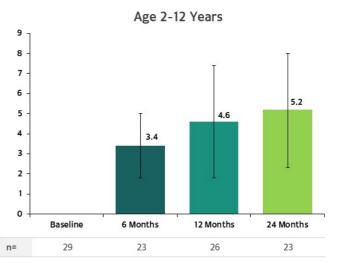
HFMSE Gains Also Notable in subset of individuals in this analysis who had started background nusinersen at age ≥ 5:

- 75% (6/8) with ≥ 1-point increase
- 50% (4/8) with ≥ 3-point increase

TOPAZ results showed HFMSE improvement from baseline or RHS stabilization across all three prespecified cohorts.¹

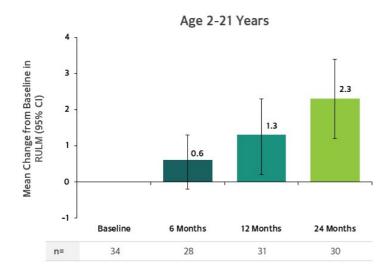
Non-Ambulatory Types 2/3 SMA (Apitegromab 20 mg/kg; Intent-to-Treat Population)	Age 2-12 years (n=16 [†])
Mean HFMSE change from baseline, (95% CI)	+4.4 (1.3, 7.4)
Patients with ≥ 1-pt increase in HFMSE, n (%)	13 (81%)
Patients with ≥ 3-pt increase in HFMSE, n (%)	9 (56%)

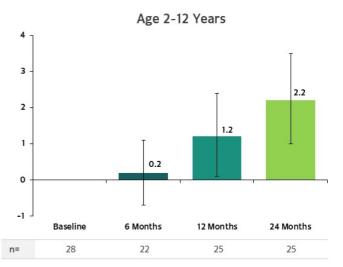

No safety signals for apitegromab were identified to date; the five most frequently reported treatment-emergent adverse events were headache, pyrexia, upper respiratory tract infection, cough, and nasopharyngitis


*Exploratory. post hoc analysis: †For 12-month endpoint, if patients skipped three consecutive doses due to site restrictions caused by COVID-19. records after dose skipping were excluded from analysis. The last observation carry forward was used for other missing data; 1.Crawford T et al. TOPAZ topline results; Presented at CureSMA. 2021 Virtual SMA Research & Clinical Care Meeting; June 9-11, 2021. 2. Scholar Rock Inc. Corporate Presentations, August 2022 at Deep Insights, Impactful Medicines (scholarrock.com) Apritegrams is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Sizable, Sustained Increases in HFMSE Observed Over 24 Months of **Apitegromab**

Pooled Non-Ambulatory Patients Excluding Data Post Scoliosis Surgery (all dose groups)




For the 24-month evaluation, an observed case analysis was conducted, which pooled all the non-ambulatory patients (Cohorts 2 and 3) and was based upon the available data for given timepoints. This analysis population included patients receiving either low dose (2 mg/kg) or high dose (20 mg/kg) apitegromab (inclusive of patients in Cohort 3 who switched from 2 mg/kg to 20 mg/kg in Year 2). This analysis excludes from the observed case analysis any HFMSE data following scollosis surgery in TOPAZ. Of the three non-ambulatory patients who had scollosis surgery, data from one was excluded and the other two did not have valid HFMSE assessments. Error bars represent SEM. Values in parentheticals represent 95% confidence interval. Crawford Tet al. TOPAZ EXTENSION: 24-MONTH EFFICACY AND SAFETY OF APITEGROMAB IN PATIENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation Presented at CureSMA; June 2022. Data on File. Scholar Rock Inc. Cambridge, MA. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Continued Increase in RULM Observed at 24 Months of Apitegromab

Pooled Non-Ambulatory Patients Excluding Data Post Scoliosis Surgery (all dose groups)

For the 24-month evaluation, an observed case analysis was conducted, which pooled all the non-ambulatory patients (Cohorts 2 and 3) and was based upon the available data for given timepoints. This analysis population included patients receiving either low dose (2 mg/kg) or high dose (20 mg/kg) apitegromab (inclusive of patients in Cohort 3 who switched from 2 mg/kg to 20 mg/kg in Year 2). This analysis excludes data from 3 non-ambulatory patients after their scoilosis surgery during TOPAZ from the Observed Case Analysis. Error bars represent SEM. Values in parentheticals represent SEM. Values in parentheticals represent SEM. Values in Parentheticals represent SEM. AND SAFETY OF APITEGROMAB IN PATIENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation Presented at CureSMA; June 2022. Data on File. Scholar Rock, Inc. Cambridge. MA. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

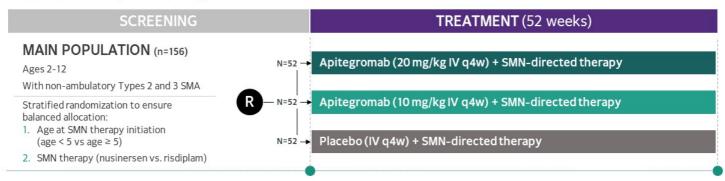
No Serious Safety Risks Identified Over 24 Months of Apitegromab Treatment

Treatment-Emergent A	dverse Events (TEAEs)*	2 mg/kg dose (N=10) n (%)	20 mg/kg dose (N=48) n (%)	Total (N=58) n (%)	
Any TEAE		10 (100)	45 (93.8)	55 (94.8)	
Any Serious TEAE		3 (30)	11 (22.9)	14 (24.1)	
Any TEAE leading to study dr	ug discontinuation	0 (0.0)	1 (2.1)	1 (1.7)	
Any Grade 3 (severe) or high	erTEAE	2 (20)	9 (18.8)	11 (19)	
Incidence and types of TEAEs were consistent with the underlying disease or nusinersen therapy	Five most frequently reported TEAEs were headache, pyrexia, upper respiratory tract infection, cough, and nasopharyngitis	No deaths or Suspected Unexpected Serious Adverse Reactions (SUSARs) reported	Adverse events reported as mostly mild to moderate in severity	No identified serious risks as of 4/7/2022	

⊘ approximately 90% remain on apitegromab as of 12/31/2022**

Crawford T et al. TOPAZ EXTENSION: 24-MONTH EFFICACY AND SAFETY OF APITEGROMAB IN PATIENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation **Notes: % = 100 x , N/N (n=incidence) **51/57 patients

Treatment-emergent adverse events (TEAEs) are defined as adverse events (AEs) that start after the first dose of study drug or start prior to the administration of study drug and worsen in severity/grade or relationship to investigational medication after the administration of study drug. Data is for safety events collected over the 24-month period and includes patients who switched from 2 mg/kg to 20 mg/kg. Data on file, extracted on April 7, 2022. Scholar Rock, Inc. Cambridge, MA. Appliegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.


Sapphire Phase 3 Pivotal Trial

Ongoing SAPPHIRE Phase 3 Trial Overview

Randomized, double-blind, placebo-controlled, parallel arm design (n=204) Enrolling patients on SMN-directed therapy (nusinersen or risdiplam) Anticipate completing enrollment in 2023

ENDPOINTS

Primary Efficacy:

Mean HFMSE change from baseline at 12 months

Additional Efficacy Measures:

RULM, WHO, other outcome measures

Safety, PK/PD, ADA

ClinicalTrials.gov Identifier: NCT05156320 R=Randomization

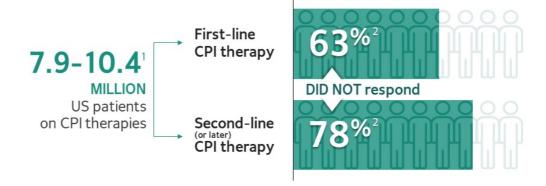
Additional Data Opportunities

Exploratory population (age 13-21), in patients using SMN therapy

 $Focused upon safety \& exploratory \ efficacy \ (n=48; 2:1 \ randomization \ between \ apitegromab \ 20 \ mg/kg \ vs \ placebo)$

Separate open-label extension study (after patients complete 12-month treatment period) Focused upon safety & exploratory long-term efficacy

Executing on the Promise: Apitegromab SMA Trials



SRK-181: Potential Transformative Backbone for a New Era of Cancer Immunotherapy

Resistance to Checkpoint Inhibitor (CPI) Therapies Remains a Significant **Clinical Challenge**

Clinically derived rationale points to significant opportunity to increase checkpoint therapy responses by targeting TGFβ-1

1. Source: Gores, M. (2022). In the eye of the storm: PD-(L)1 inhibitors weathering turbulence [White paper]. IQVIA. https://www.iqvia.com/library/white-papers/in-the-

eye-of-the-storm-pd-l-l-inhibitors-weathering-turbulence
2. Source: Carretero-Gonzalez et al. (2018) Oncotarget 9:8706-8715
Meta-analysis of twelve randomized trials with control arm or adequate safety profile (includes nivolumab, pembrolizumab, and atezolizumab)

Strong Scientific Rationale for the Role of TGF\$\beta\$ Inhibition in Immuno-Oncology

Nature (online), February 14, 2018.

TGFB attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells

Science Translational Medicine, March 25, 2020.

Selective inhibition of TGFβ-1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape

Constance J. Martin, et al.

Vol 12, Issue 536. DOI: 10.1126/scitranslmed.aay8456

June 2019.

"Merck to Acquire Tilos Therapeutics: Merck Gains Portfolio of Investigational Antibodies Modulating TGFβ"

· \$773 million total potential deal value

Cell

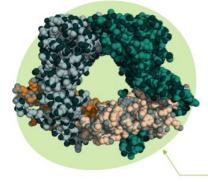
Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma

Willy Hugo, Jesse M. Zaretsky, Lu Sun, Douglas B. Johnson, Antoni Ribas, Roger S. Lo

Volume 165, Issue 1, 24 March 2016, Pages 35-44

Nature Reviews , July 24, 2020 NATURE REVIEWS | CLINICAL ONCOLOGY

TGFβ: biology in cancer progression and immunotherapy


Rik Derynck^{1,2,3}, Shannon J. Turley⁴ and Rosemary J. Akhurst^{2,3} July 24, 2020: https://doi.org/10.1038/ s41571-020-0403-1

August 2022.

"Bristol Myers Squibb Enters Agreement to Acquire Forbius TGF-beta Program"

SRK-181: Unique Latent TGFβ-1 Selective Approach to Overcoming Checkpoint Inhibitor Resistance

Traditional Target

SRK-181: Latent TGFβ-1 Inhibitor

	Targets TGFβ-1	Potential to overcome CPI resistance	SRK-181 inhibits the TGFβ-1 implicated in check point inhibitor resistance				
	Selective to β-1 isoform	Highly selective to β-1 isoform vs. 2 and 3	Increases therapeutic window and potentially avoids toxicities associated with non-selective TGF β inhibition	Other programs target multiple isoforms of TGFβ			
•	Targets the latent form of TGFβ-1	Increases opportunity to inhibit TGFβ-1	Selectively targeting the latent form shuts off the growth factor before activation	Most other programs target the mature form of TGFβ-1			
	Context- independent	Inhibits all sources of TGFβ-1	SRK-181 targets all TGFβ-1 sources (LRRC33, GARP and LTBP1 and 3)	Some programs only target one source			

SRK-181-mlgG1 + Anti-PD1 Overcomes Immune Exclusion

Overcoming immune exclusion

Tumor micro-environment

Anti-PD1

Immune Exclusion

Anti-PD1/SRK-181-mlgG1

Overcome Exclusion

SRK-181-mlgG1 combination therapy led to influx and amplication of cytotoxic CD8+ cells in preclinical bladder tumor model

Preclinical data published in Science Translational Medicine. Martin CJ, et al. Sci Transl Med. 2020 Mar 25;12(536):eaay8456. https://scholarrock.com/platform/publications. Data from MBT-2 syngeneic tumor model. Dose 10mg/kg QW for 4 weeks.

DRAGON Phase 1 POC Trial to Evaluate SRK-181's Ability to Overcome **Primary Resistance to Checkpoint Inhibitors**

PART A PART B A1 A2 SRK-181 SRK-181+anti-PD-(L)1; SRK-181 + anti-PD-(L)1; non-responders to prior anti-PD-(L)1 all-comers non-responders to prior anti-PD-(L)1 COHORT **TREATMENT** Non-small cell lung cancer SRK-181 + pembrolizumab Urothelial carcinoma _ $\overline{}$ Clear cell renal cell carcinoma** Head and neck small cell carcinoma SRK-181 + pembrolizumab

^{*} A cohort of 2000 mg Q2W (n=3) was also evaluated.

^{**}The clear cell RCC cohort will also explore the effects of SRK-181 in patients with relapsed response after anti-PD-(L)1 treatment.

1. NCT04291079 on www.clinicaltrials.gov.

DRAGON Part A: Safety

PART A1

Treatment-Emergent AEs Related to SRK-181, All Grades >10%

Dose (MG)	80 N=1	240 N=1	800 N=3	1600 N=4	2400 N=3	3000 N=3	2000 N=4	All N=19
Fatigue	0	1	0	0	1	0	1	3 (15.8%)
Decreased Appetite	1	0	1	0	0	0	0	2 (10.5%)
Nausea	1	0	0	0	0	0	1	2 (10.5%)

No DLTs were observed up to 3000 mg q3w and 2000 mg q2w

No Grade 4 or 5 reatment-related AEs occurred

Treatment-related Grade 3 AEs:

- · Alanine aminotransferase increased (1 patient)
- Treatment-related SAE were elevated troponin I (1 patient, at 2000 mg q2w)

PART A2

Treatment-Emergent AEs Related to SRK-181 or Anti-PD(L)1, All Grades >10%

Dose (MG)	240 N=3	800 N=3	1600 N=6	2400 N=3	All N=19
Pruritis	1	0	1	1	3 (20.0%)
Rash	0	1	0	2	3 (20.0%)
Rash maculo-papular	1	0	1	1	3 (20.0%)
Diarrhea	0	0	2	0	2 (13.3%)

No DLTs were observed up to 2400 mg q3w No Grade 4 or 5 treatment-related AEs occurred

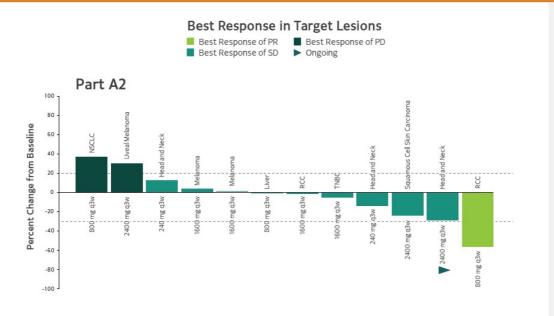
Treatment-related Grade 3 AEs:

 Puritus (2 patients), blister, immune-mediated lung disease, rash and rash maculo-popular (1 patient each)

Treatment-related SAEs:

Blister, pruritus, and rash (all in 1 patient) and immune-mediated lung disease (1 patient)

Yap T et al. SRK-181, a latent TGFβ1 inhibitor: safety, efficacy, and biomarker results from the dose escalation portion of a phase I trial (DRAGON trial) in patients with advanced solid tumors (Poster 780); Presented at STIC: Nov. 10-11, 2022. Clinical cutoff date: August 29, 2022. All dose levels were administered q3w except 2000 mg, which was administered q2w. SRK-181 is an investigational drug candidate that is being evaluated for the treatment of cancer. SRK-181 has not been approved by the US FDA or any other health authority, and its safety and efficacy have not been established.


DRAGON Part A: Preliminary Efficacy Data* Presented at SITC November 2022

Yap T et al. SRK-181, a latent TGFβ1 inhibitor: safety, efficacy, and biomarker results from the dose escalation portion of a phase I trial (DRAGON trial) in patients with advanced solid tumors (Poster 780). Presented at STIC: Nov. 10-11, 2022. Preliminary anti-tumor effects were assessed using RECIST1.1 and reported based upon local investigation reads: as of August 29, 2022. SRK-181 is an investigational drug candidate that is being evaluated for the treatment of cancer. SRK-181 has not been approved by the US FDA or any other health authority, and its safety and efficacy have not been established.

Preliminary Efficacy Data in Combination with Pembrolizumab: **Best Response in Target Lesions**

Yap T et al. SRK-181, a latent TGFβ1 inhibitor: safety, efficacy, and biomarker results from the dose escalation portion of a phase I trial (DRAGON trial) in patients with advanced solid tumors (Poster 780); Presented at SITC; Nov. 10-11, 2022. "Clinical cutoff date: August 29, 2022.
Response is assessed using RECIST V1.1 by PI; the scan is performed during screening, 6 weeks after first dose, every 9 weeks for the next 6 months of treatment, and every 12 weeks thereafter. SRK-181 is an investigational drug candidate that is being evaluated for the treatment of cancer. SRK-181 has not been approved by the US FDA or any other health authority, and its safety and efficacy have not been established.

Part B (as of 8/29/22)

- · 14 patients enrolled
- · One additional confirmed PR ongoing patient with anti-PD-1 resistant clear cell renal cell carcinoma
- · All dose levels were generally well tolerated including recommended SRK-181 dose of 1500 mg q3w or 1000 mg q2w in combination with anti-PD-(L)1 for Part B

SRK-181: Encouraging Early Clinical Data Consistent with Hypothesis

Preclinical Data

TGFβ pathway evaluation (PD)

- Target engagement (blood)
- ▼ TGFβ-1 signaling (tumor p-SMAD2 & RNAseq)

Immunophenotyping, including immune exclusion status

- ▼ Tumor immune contexture (e.g., tumor CD8+ T cells)
- Immune cell contexture (tumor & blood MDSC's)
- Immune response markers (e.g., IO gene signature)

Therapeutically relevant dose

Drug exposure needed for efficacy

Objective response

Anti-tumor response and survival benefits

Phase 1 DRAGON proof-of-concept trial

TGFβ pathway evaluation (PD)

- Target engagement (blood)
- ☑ TGFβ-1 signaling (tumor p-SMAD2 & RNAseq)

Immunophenotyping, including immune exclusion status

- ☑ Tumor immune contexture (e.g., tumor CD8+ T cells)
- ☐ Immune response markers (e.g., IO gene signature)

Therapeutically relevant dose

Obsing regimens achieved target steady state levels

Objective response

Anti-tumor response observed (partial responses)

SRK-181 Summary

Differentiation

- First in class monoclonal antibody targeting latent and context-independent binding to TGFβ1
- Differentiated from other TGFβ inhibitors by its novel selectivity
- Offers potential to avoid toxicity and dose-limiting challenges of non-selective TGFβ inhibition approaches

Strong Scientific Rationale

- Emerging evidence implicates TGF β 1 as driving resistance to checkpoint inhibitor therapies
- Potent and selective inhibitor of latent TGF $\!\beta 1$ activation in preclinical studies
- · Strong safety and preclinical efficacy data

Clear Clinical Pathway

- DRAGON Part A demonstrated ability to escalate to high doses of SRK-181 at levels exceeding the anticipated efficacious drug exposure level
- Advanced to DRAGON Part B: Evaluating SRK-181 in 5 parallel tumor-specific cohorts, with efficient path towards early POC for each
- · Early efficacy signals have been observed

High Unmet Medical Need & Large Commercial Opportunity

- PD-(L)1* becoming a standard of care therapy in many tumor types; the market for synergistic combination product would be vast
- SRK-181 could potentially be used in many tumor types, potentially both in patients resistant to PD-(L)1 and in CPI naïve patients, as well as other therapeutic applications

*(PD-1/PD-L1)

20

$\mathsf{TGF}\beta$ is Established as Key Driver of Fibrosis Across Multiple Diseases

Nature Reviews, April 25, 2016

NATURE REVIEWS | NEPHROLOGY

TGF- β : the master regulator of fibrosis

Xiao-ming Meng¹, David J. Nikolic-Paterson² and Hui Yao Lan³

Int. J. Mol. Sci. August 27, 2018

Targeting TGF-\$\beta\$ Signaling in Kidney Fibrosis

Yoshitaka Isaka

Nature Reviews. August 19, 2014

NATURE REVIEWS I RHEUMATOLOG

Transforming growth factor $\beta \text{--at}$ the centre of systemic sclerosis

Robert Lafvatis

J. Am. Soc. Nephrol. December 3, 2017

Targeting Anti-TGF-β Therapy to Fibrotic Kidneys with a Dual Specificity Antibody Approach

Steve McGaraughty, "Rachel A. Davis-Taber, 'Chang Z. Zhu, "Todd B. Cole, " Arthur L. Nikkel," Meha Chhaya, 'Kelly J. Doyle, "Lauren M. Olson, "Gregory M. Preston, ' Chrisine M. Grinnell, "Katherine M. Salte," Anthony M. Gaimis, "Yanping Luo," Victor Sun, 'Andrew D. Goodearl, 'Mural Gopalakrishnan," and Susan E. Lacy! J Pathol, July 25, 2021

 $\mathsf{TGF-}\beta$ as a driver of fibrosis: physiological roles and the rapeutic opportunities

Erine H Budi¹, Johanna R Schaub¹, Martin Decaris¹, Scott Turner¹, Rik Derynck²

J Receptors Sign Trans, Feb 13, 2020

Inevitable role of TGF-B in progression of nonalcoholic fatty liver disease

Bhagyalakshmi Nair and Lekshmi R. Nath

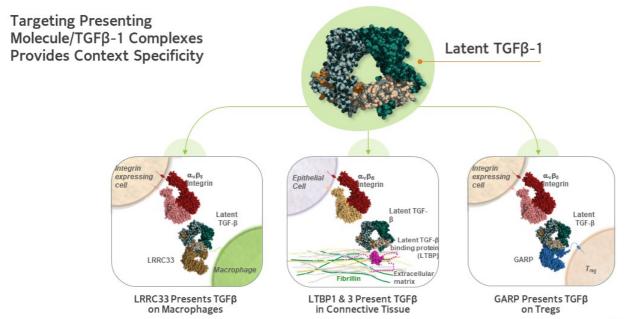
Proc Am Thorac Soc, July 3, 2006

Transforming Growth Factor β

 $\textbf{A C} entral\,\textbf{Modulator}\, of\, \textbf{Pulmonary}\, and\, \textbf{Airway}\, \textbf{Inflammation}\, and\, \textbf{Fibrosis}$

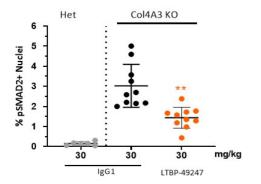
Dann Shannard

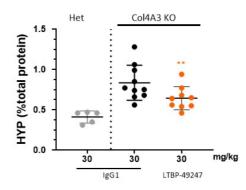
PNAS, February 24, 1986


PNAS

Transforming growth factor type β : Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro

ANTA B ROBERTS MICHAEL B. SPORN*, RICHARD K. ASSOLAN*, JOSEPH M. SMITH, ANAPETE S. ROCHE*, LALLGE M. WAKEFIELD*, USSULA I. HEINE*, LANCE A. LIOFTA*, VINCENT FALANGA*, JOHN H. KEHRL¹, AND ANTHON'S FALUCI¹₃


Targeting Latent TGF β -1 Complexes Creates Multiple "Handles" For Selectivity



LTBP-49247 Reduces TGF β Signaling and Fibrosis in Preclinical Models of Kidney Fibrosis

LTBP-49247 reduces a TGFβ PD biomarker in kidneys of *Col4a3* KO mice (Alport Syndrome model)

** p < 0.01 One way ANOVA vs. IgG HYP=hydroxyproline LTBP-49247 reduces fibrosis in kidneys of Alport model

- Efficacy also seen in rat model of kidney fibrosis
- No observed toxicity in mouse 13-week non-GLP repeat dose study
- Favorable PK in cynomolgus monkeys (t1/2 ~28 days) suggests LTBP-49247 is amenable to clinical subcutaneous dosing with promising developability profile

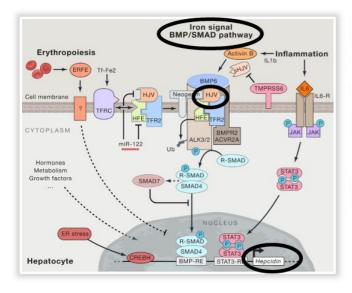
Significant Opportunities to Address High Unmet Need Across Multiple Fibrotic Indications

Alport Syndrome (AS)
Focal Segmental Glomerulosclerosis (FSGS)
IgA Nephropathy (IgAN)

Primary Sclerosing Cholangitis (PSC)

Idiopathic Pulmonary Fibrosis (IPF)

Diffuse Cutaneous Systemic Sclerosis (dcSSc)


Collectively, significant commercial potential given large patient population with clear high unmet need given poor outcomes and lack of effective therapeutics

- Significant impact to delay or stop progression to end-stage disease and organ transplant
- Expansion opportunities via other indications given shared etiologies

BMP6/RGMc Pathway is a Well Validated Regulator of Systemic Iron Homeostasis

HJV/RGMc is a key player in the regulation of hepcidin expression

- Human mutations in HJV/RGMc establish it as a central player in hepcidin ${\rm regulation}^1$
- Knockout phenotypes and tissue-specific expression pattern demonstrate that its predominant role is in iron homeostasis²
- Member of repulsive guidance molecule (RGM) family (RGMa, RGMb, RGMc/HJV) that act as BMP co-receptors to modulate BMP signaling³

Anemia of Inflammation/ Chronic Disease

 Elevation proinflammatory cytokines drives increased hepcidin expression and results in anemia due to functional iron deficiency⁴

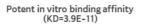
Hepcidin
Serum iron

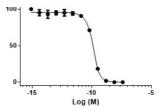
Fig. Muckenthaler, M.U., Rivella, S., Hentze, M.W. and Galy, B. (2017) A Red Carpet for iron Metaboism. Cell, 168(3): 344-361

i: Kuns-Hashimoto R. et al. (2003) Selective binding of ROMChjemojuvelin, a key protein in systemic iron pendolosin, to BMP-2 and neogenin. Am J Physiol Cell Physiol 294(4):C994-C1003

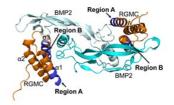
i: Corstant M. et al. (2007) Repression of repulsive guidance molecule Cduring inflammation is independent of Hie and involves tumor necrosis factor-alpha. Am J Pathol 170(2):497-594

i: Core A.E. et al. (2014) Hemojuvelin and bone morphogenetic protein (3MP) signaling in fron homeotasis. Front Pharmacol. S:104.

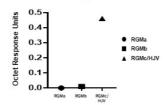

Vang CY and Babati L. (2016) Hepodin Regulation in the Almemia of Inflammation. Curr Opin Hemotar 27(3): 183-201.

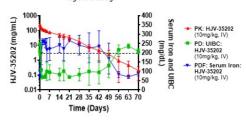


HJV-35202: A High-Affinity Antibody Demonstrating Selective Inhibition of HJV/RGMc and Robust PK/PD in Cynos


Key Attributes of HJV-35202:1,2

- High-affinity antibody
- · Specific to RGMc, with mechanism of specificity understood
- · Cross-reactive to human, mouse, rat and cyno
- Sustained PD observed in healthy rats and cynos, with clear PK/PD relationship
- · Highly manufacturable framework with no sequence liabilities
- · Formulatable into a subcutaneous format (150 mg/mL)




Highly specific to RGMc/HJV with well understood mechanism

Specific to RGMc over other RGM family members

Sustained PD effect in single dose Cyno study

1. Nicholls S.B., et al. Poster: RGMc-selective antibodies modulate iron homeostasis in vivo, 12th International BMP Conference, Tokyo, October 2018
2. Scholar Rock, Data on File

Significant Opportunities to Target Iron-Restricted Anemias Across Multiple **Indications**

Chronic Kidney Disease (CKD)

Anemia of Chronic Inflammation (AI)

Myelofibrosis (MF)

Targeting RGMc/HJV for anemia is well validated and relatively de-risked

High levels of hepcidin, the main regulator of systemic iron metabolism, is associated with anemia across various diseases

Safe and convenient RGMc inhibitor has promise of improving patient outcomes across multiple indications as stand alone or in combination with SoC

- Significant and clear unmet need given lack of approved treatments or severe limitations of current treatments
- Well defined patient population

Collectively, sizeable commercial opportunity given relatively large population

- · Potential for rapid with clear regulatory path
- Opportunity to build an anemia franchise with initial POC and indication expansion in the future

Scholar Rock Summary

Revolutionary Platform

Discover and Develop monoclonal antibodies with extraordinary selectivity Overcome the Challenges targeting the latent forms of growth factors

Robust Clinical Pipeline

Apitegromab (Phase 3)

- Potential first-in-class
- Significant market opportunity
- Program on track
- Clear path to approval

SRK-181 (Phase 1)

 Potential to shift current treatment landscape for cancer patients with CPI resistance

Upcoming Data Readouts

for both clinical programs

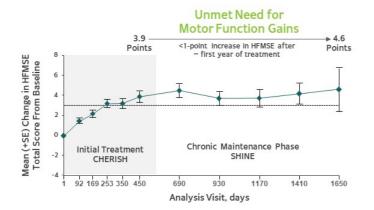
Positioned For Success

Discovery-stage Pipeline

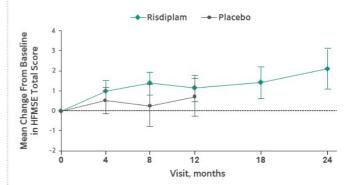
- Fibrosis and iron-restricted anemia
- · Strategic optionality

\$205M financing in June 2022

 Year end cash balance of \$315M, anticipated runway into 2025


Appendix

Motor Gains in Patients with Types 2 and 3 SMA on SMN Therapies Appear to Plateau After Initial Gains


NUSINERSEN1

Plateauing of HFMSE increases observed following initial treatment effects for nusinersen

RISDIPLAM2*

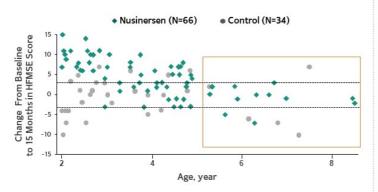
Plateau of HFMSE increases observed following initial treatment effect of risdiplam, although longer timeframes currently under investigation

HFMSE=Hammersmith Functional Motor Scale-Expanded.

1. Mercuri E, et al. Presented at: World Muscle Society Congress 2020, P. 257

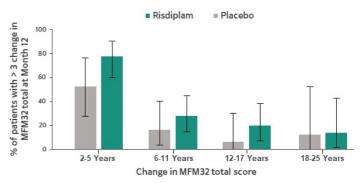
2. Oskoul M. et al. Presented at: 2021 Muscular Dystrophy Association Clinical & Scientific Conference; March 15-18, 2021. Poster 80.

*Overall population 2-25 years old.


This third-party information is provided for background only and is not intended to convey or imply a comparison to the TOPAZ clinical trial results.

Non-Ambulatory Type 2/3 SMA:

Majority of Patients Started on SMN Therapy After Age 5 Do Not Experience Motor Function Increases


Nusinersen CHERISH Trial in Later-Onset SMA¹

In patients with later-onset SMA who were age ≥5 at screening:

- · Primary benefit of nusinersen: stabilization of motor function
- · Majority of patients do not experience HFMSE increases

Risdiplam SUNFISH Trial in Later-Onset SMA²

- Low percentage of patients over the age of 5 achieved ≥3-point increase on MFM32 scale, even with risdiplam treatment
- HFMSE secondary endpoint showed a mean 0.58-point improvement over placebo (not statistically significant)

^{1.} Mercuri E, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. *NEngl J Med*. 2018;378:625-635.

2. Efficacy and safety of risdiplam (RG7916) in patients with Type 2 or non-ambulant Type 3 spinal muscular atrophy (SMA) Roche/PTC Therapeutics This third-party information is provided for background only and is not intended to convey or imply a comparison to the TOPAZ clinical trial results

SAPPHIRE Phase 3 Design is Optimized by Insights from TOPAZ

TOPAZ Learnings

Largest HFMSE gains observed in the non-ambulatory Type 2/3 SMA cohorts

Exploratory age 2-12 analysis in non-ambulatory Type 2/3 showed transformative potential

HFMSE gains evident by 12 months of treatment

Dose response seen (greater effect observed with 20 mg/kg over 2 mg/kg)

SAPPHIRE Design Elements

- Study population: Non-ambulatory Type 2/3 SMA
- Primary efficacy endpoint: HFMSE

Age 2-12 main efficacy population

12-month treatment duration

- 20 mg/kg apitegromab dose
- Also evaluating 10 mg/kg arm (to explore potential that dose between 2 and 20 mg/kg may be comparable to 20 mg/kg)

TOPAZ Subject Disposition, Demographics and Baseline Characteristics 1,2

	AMBULATOR	AMBULATORY PATIENTS		NON-AMBULATORY PATIENTS		
	СОНО	COHORT 1		COHORT 3		
	20 mg/kg monotherapy	20 mg/kg + nusinersen	20 mg/kg + nusinersen	2 mg/kg + nusinersen	20 mg/kg + nusinersen	
N (dosed)	11	12	15	10	10	
Mean age at screening (min, max)	12.1 (7, 19)	13.1 (7, 21)	11.7 (8, 19)	4.1 (2, 6)	3.8 (2, 6)	
Mean age at SMA diagnosis (min, max)	5.9 (2, 15)	4.5 (2, 15)	3.1 (1, 16)	1.2 (1, 2)	1.2 (1, 3)	
Female (%)	73%	58%	53%	30%	50%	
SMN2 Gene Copy* (#, %)						
2	1 (9%)	0 (0%)		1 (10%)	1 (10%)	
3	4 (36%)	9 (75%)	11 (73%)	8 (80%)	8 (80%)	
4	4 (36%)	1 (8%)	2 (13%)	1 (10%)	0 (0%)	
# of maintenance doses of nusinersen at baseline (min, max)	N/A	5.6 (2, 8)	5.1 (2, 9)	5.5 (2, 9)	5.4 (3, 8)	
Discontinuation(s)	0	2 [†]	1 [†]	0	0	
Scoliosis (#, %)	7 (63.6)	4 (33.3)	11 (73.3)	4 (40%)	3 (30%)	
Contracture(s) (#, %)	6 (54.5)	7 (58.3)	13 (86.7)	8 (80%)	4 (40%)	
Mean RHS score (min, max)	47.6 (26, 63)	51.3 (43, 62)				
Mean HFMSE score (min, max)			22.7 (13, 39)	26.1 (12, 44)	23.5 (14, 42)	

^{*1} patient answered 3-4, 1 patient answered >4. both patients are in Cohort 1 treated with 20 mg/kg + nusinersen; data not available for all patients.
†1 cohort 1 patient discontinued study in 12M Treatment Period, 1 cohort 1 patient and 1 cohort 2 patient discontinued during 24M Extension Period A. All discontinuations were for reasons unrelated to study drug.

HFMSE=HAmmersmith Functional Motor Scale Expanded; RHS=Revised Hammersmith Scale.

Crawford T et al. Presented at: 2022 Annual SMA Conference; June 16-19, 2022; Anaheim, CA. 2. Data on file; Scholar Rock. 2022.

Non-Ambulatory Type 2 High Dose Cohort: Initiated nusinersen age <51,2

Sizable increases in HFMSE observed in patients already treated with chronic maintenance nusinersen

Improved: 88% (7/8)

• ≥ 5-point increase: 63% (5/8)

• > 10-point increase: 38% (3/8)

Continuous and durable improvements observed through 12-months of treatment

Apitegromab (20 mg/kg) + nusinersen	n=8*
Mean change from baseline in HFMSE (95% CI)	+7.1 (1.8, 12.5)
# (%) patients achieving:	
≥ 1-pt increase in HFMSE	7/8 (88%)
≥ 3-pt increase in HFMSE	5/8 (63%)
≥ 5-pt increase in HFMSE	5/8 (63%)
Baseline characteristics: mean (min, max)	n=10
Age	3.8 (2, 6)
HFMSE score	23.5 (14, 42)
# of nusinersen maintenance doses	5.4 (3, 8)

^{*}This was a primary intent-to-treat (ITT) analysis that as prespecified, excluded 2 patients who missed 3 doses due to COVID-19 related site access restrictions. An all-patients sensitivity analysis that included those 2 patients had similar results as this primary ITT analysis.

1. Craw ford Tet al. TOPAZ topline results; Presented at CureSMA, 2021 Virtual SMA Research & Clinical Care Meeting; June 9-11, 2021. 2. Data on file; Scholar Rock. 2022. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

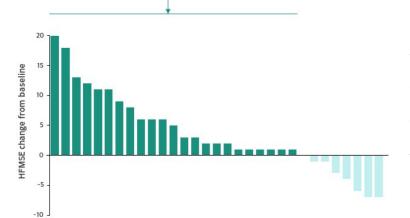
Non-Ambulatory Type 2/3 Cohort: Initiated nusinersen age ≥51,2

Majority of patients improved in **HFMSE** (despite initiating background nusinersen age ≥ 5)

• ≥ 1-point increase: ~67%

• ≥ 3-point increase: ~30%

Durability of effect observed through 12-months of treatment


Apitegromab (20 mg/kg) + nusinersen	Per Protocol Population* (n=13)	Intent-to-Treat Population (n=14)	
Mean change from baseline in HFMSE (95% CI)	+1.2 (-0.5, 2.9)	+0.6 (-1.4, 2.7)	
# (%) patients achieving:			
≥ 1-pt increase in HFMSE	9/13 (69%)	9/14 (64%)	
≥ 3-pt increase in HFMSE	4/13 (31%)	4/14 (29%)	
≥ 5-pt increase in HFMSE	2/13 (15%)	2/14 (14%)	
Baseline characteristics: mean (min, max)	n=	:15	
Age 11.7 (8, 19)		(8, 19)	
HFMSE score 22.7 (13, 39)		13, 39)	
# of nusinersen maintenance doses	5.1 (2, 9)		

*Intent-to-treat analysis excluded 1 patient (per prespecified approach) who missed 3 doses due to COVID-19 related site access restrictions; 1 patient who had inadvertently been enrolled who was receiving (and continued to receive) an acetylcholinesterase inhibitor was removed, which is not permitted per the trial protocol; 1. Crawford T et al. TOPAZ topline results; Presented at CureSIMA, 2021 VirtualSIMA Research & Clinical Care Meeting; June 9-11, 2021 2. Data on file, Applegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Aptlegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

TOPAZ Topline 12-Month Data Showed Apitegromab's Transformative Potential in Patients with Type 2/3 SMA

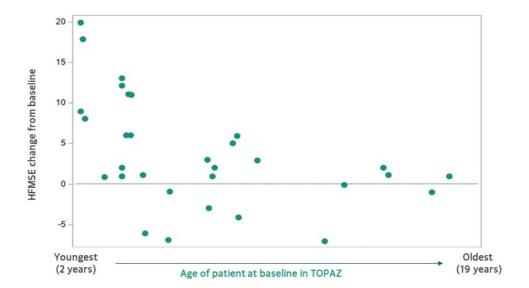
Majority of non-ambulatory patients* experienced HFMSE increases from apitegromab during chronic maintenance phase of SMN therapy

Apitegromab led to HFMSE improvements in both non-ambulatory cohorts

including patients started on nusinersen at age ≥ 5

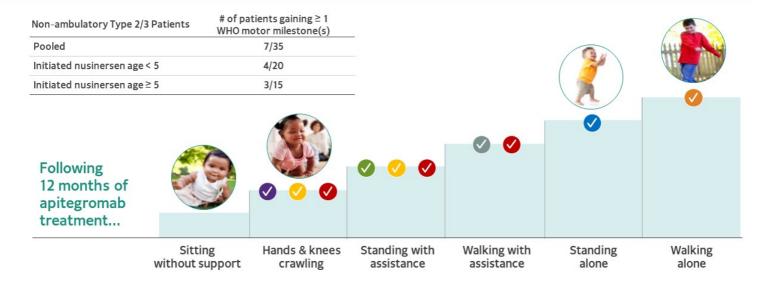
	Initiated background nusinersen		
	Age < 5**	Age ≥ 5	
Mean HFMSE Increase	+7.1 points	+0.6 points	
≥ 1-point Increase % (n/N)	88% (7/8)	64% (9/14)	
≥ 3-point Increase % (n/N)	63% (5/8)	29% (4/14)	

Crawford T et al. TOPAZ topline results; Presented at CureSMA, 2021 Virtual SMA Research & Clinical Care Meeting; June 9-11, 2021


*Pooled cohorts of non-ambulatory patients treated with apitegromab 20 mg/kg and 2 mg/kg

*Non-ambulatory patients who initiated background nusinersen at a young age of <5 years and treated with apitegromab 20 mg/kg dose. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

HFMSE Improvements Observed Across Age Range of Non-Ambulatory Patients with Relatively Larger Gains from Earlier Treatment


*Pooled cohorts of non-ambulatory patients treated with apitegromab 20 mg/kg and 2 mg/kg; excludes 4 patients who each missed 3 doses of apitegromab due to COVID-19-related site access restrictions and were not included in the primary (intent-to-treat) analysis.

Data on file. Scholar Rock, Inc. Cambridge, MA. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy.

Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

WHO Motor Development Milestone Achievements Further Support Apitegromab's Potential to Improve Motor Function¹

WHO motor milestone analysis included all patients who completed the 12-month treatment period, including 4 patients who missed 3 doses of apitegromab due to COVID-19-related site access restrictions. Median baseline score for both non-ambulatory cohorts was 1.0.

Pictures are not of patients with SMA and are not meant to be representative of patients with SMA. 1. Crawford T et al. TOPAZ topline results; Presented at CureSMA, 2021 Virtual SMA Research & Clinical Care Meeting; June 9-11, 2021

Significance of Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM)

HFMSE

Assesses the physical abilities of patients with Types 2/3 SMA

TO:

Touch Head Above Ear Level whilst maintaining stable

trunk and head

Roll From Supine to Prone

over the right side without pulling/ pushing

Graded on scale 0 to 2

- 1 = performed with modification or adaptation 2 = without modification or adaptation

Item scores are summed to give a total score

The higher the total score, the greater the patient's motor function

Maximum score: 66

Examples of items:

- · One hand to head in sitting
- · Rolls supine to prone
- · Lying to sitting
- · Four-point kneeling
- · Supported standing
- Stepping
- · Ascends 4 stairs with railing

RULM

Evaluates Motor Performance in Upper Limbs

Bring Weight at Eye Level

19 Items

Graded on scale 0 to 2 (Except for 1 activity with a binary score)

0 = unable

- 1 = able with modification
- 2 = able with no difficulty

Evaluated upper limb tasks correspond to ability to perform everyday activities

Maximum score: 37

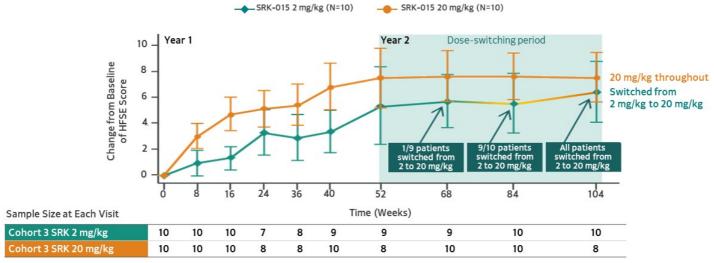
Examples of items:

- Putting a coin into a cup
- · Elevating a cup to mouth
- · Picking up a coin
- · Bringing hand to shoulder
- · Lifting up weighted objects
- · Opening a zip lock bag
- · Drawing a line on paper

O'Hagen et al. 2007; Glanzman et al. 2011; Hammersmith Functional Motor Scale Expanded for SMA (HFMSE) Manual, 2019 Mazzone et al. 2017; Pierzchlewicz et al. 2021; Revised Upper Limb Module for SMA Manual, 2014

TOPAZ Extension Period: 24-Month Patient Disposition

	Cohort 1 –	Non-Ambulatory		
	Ambulatory	Cohort 2	Cohort 3	Total
# Non-Ambulatory Patients (2-21)		15	20	35
# Non-Ambulatory Patients (2-12)		9	20	29
Dropped Out (0-12 M)	1	0	0	0
Dropped Out (12-24 M)	1	1	0	1
Not Having Valid HFMSE testing at Month 24	Not applicable	5*	1**	6
Not Having RULM at Month 24	Not applicable	2***	1****	3
# of patients who received scoliosis surgery	1	2****	1	3


^{*} Includes 1 patient who withdrew from study; 1 patient off schedule due to scheduled surgery; 1 patient who had hip pain; 1 patient with femur fracture; and 1 patient who refused to be in supine position.
** Patient with bilateral lower extremity cast
*** Includes 1 patient withforew from study, and 1 patient off schedule due to planned surgery.
**** Patient was too young for RULM at baseline and RULM was not conducted at following visit.
***** Patients did not have valid HFMSE test at 24 months.

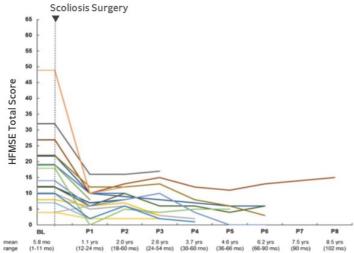
Strong Evidence of Dose Response Observed Over 24 Months Further Supported by Data from Low Dose to High Dose Switch in Non-Ambulatory Patients

Mean Change from Baseline in HFSME Scores Over Time (Cohort 3)

Excludes data after scoliosis surgery

Crawford T et al. TOPAZEXTENSION: 24-MONTH EFFICACY AND SAFETY OF APITEGROMAB IN PATIENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation Presented at CureSMA; June 2022

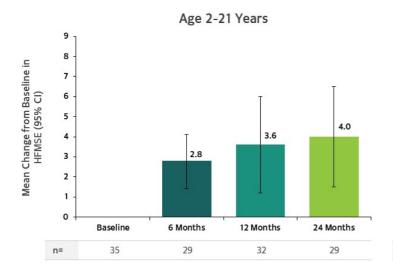
 $This analysis \ excludes from the Observed Case \ Analysis \ the \ HFMSE \ data \ attained \ post-scoliosis \ surgery \ during \ TOPAZ. \ Error \ bars \ represent \ SEM.$

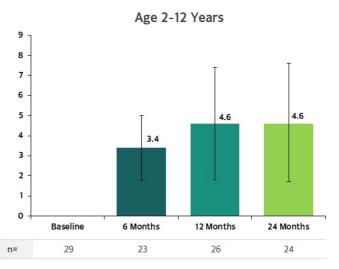

Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Reported Impact of Scoliosis Surgery on Motor Abilities in SMA

Post-Surgery HFMSE scores Type 2/3 SMA

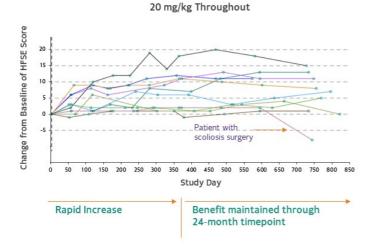
peer-reviewed study

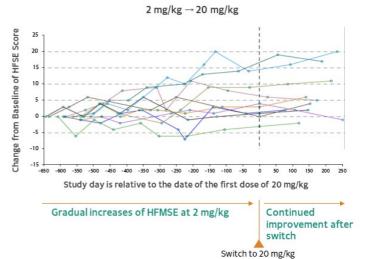

3-month post-surgery assessment


14/17	Lost >3 points on the HFMSE (mean change = - 12.1, SD = 8.9)	Functionally meaningful change
13/17	Minimal HFMSE changes within \pm 2 points (mean change = - 0.7)	No change or stability
0/17	Improvement > 2 points post-surgery	

Dunaway Young et al. 2020

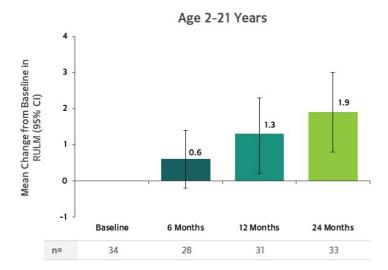
Sizable, Sustained Increases in HFMSE Observed At 24 Months of Apitegromab Pooled Non-Ambulatory Patients




Observed Case Analysis is based upon data available for a given timepoint, and this analysis population includes patients treated with the lower dose 2 mg/kg and does not exclude any patients who missed apitegromab doses due to COVID-19 site access restrictions. Error bars represent standard error of the mean (SEM). Values in parentheticals represent 95% confidence interval. Data on File. Scholar Rock, Inc. Cambridge, MA. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Strong Evidence of Dose Response Observed Over 24 Months Further Supported by Data from Low Dose to High Dose Switch in Non-Ambulatory Patients

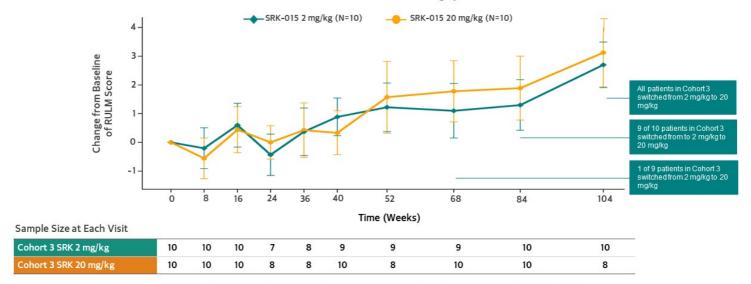
Most patients in Cohort 3 who switched from 2 mg/kg to 20 mg/kg continued to show HFMSE improvement




Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Continued Increase in RULM Observed at 24 Months of Apitegromab

Pooled Non-Ambulatory Patients


Observed Case Analysis is based upon data available for a given timepoint, and this analysis population includes patients treated with the lower dose 2 mg/kg and does not exclude any patients who missed apitegromab doses due to COVID-19 site access restrictions. Data on File. Scholar Rock. Inc. Cambridge, MA. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

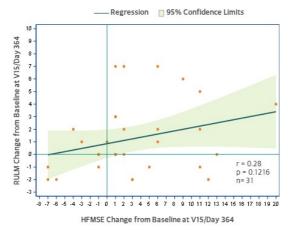
Cohort 3: Mean RULM Score Change Over TimeRULM Trended Up in Low Dose Arm Patients After Switch to High Dose

Mean Change from Baseline in RULM Scores Over Time (Cohort 3)

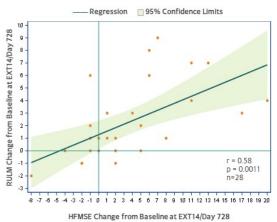
Excludes data after scoliosis surgery

Observed Case Analysis is based upon data available for a given timepoint, and this analysis population includes patients treated with the lower dose 2 mg/kg and does not exclude any patients who missed apitegromab doses due to COVID-19 site access restrictions. Error bars represent standard error of the mean (SEM). Error bars represent SEM. Crawford Tet al. TOPAZ EXTENSION: 24-MONTH EFFICACY AND SAFETY OF APITEGROMAB IN PATENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation Presentated at CureSMA; June 2022. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Correlation of HFMSE to RULM Increased Over 24 Months


Pooled Non-Ambulatory Patients

"The observation that the majority of patients in this analysis experienced gains in both the **HFMSE and RULM** over 24 months further supports the therapeutic potential of apitegromab."


- Basil Darras, MD

Associate Neurologist-in-Chief, Boston Children's Hospital; Professor of Neurology. Harvard Medical School; TOPAZ trial Investigator

RULM and HFMSE Change from Baseline at 12 Months **Observed Cases**

RULM and HFMSE Change from Baseline at 24 Months **Observed Cases**

Crawford T et al. TOPAZEXTENSION: 24-MONTHEFFICACY AND SAFETY OF APITEGROMAB IN PATIENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation Presented at CureSMA; June 2022.

This analysis is based on the Observed Case Analysis population. The 12-month graph displays all patients who had a valid measurement at visit 15 (Day 364) and the 24-month graph displays all patients who had a valid measurement at extension visit 14 (Day 728). 'Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Activities of Daily Living and Fatigue: Assessed by Three Measures

PEDI-CAT, PROMIS, and ESBBT

Used to assess:

- · ADL
- Fatigue
- Muscle Endurance

PEDI-CAT:

Measure of activities of daily living

Measures pediatric abilities through 3 functional domains, daily activities, mobility, and social cognitive¹

- 4-point scale (1=unable to 4=easy) assessment of various activities, higher scores reflect improved abilities^{1,2}
- • PEDI-CAT has been validated in SMA, but alone cannot identify small changes in function across all types of SMA $^{\rm 3}$

PROMIS (Fatigue): Measure of Patient Fatigue

PRO measurement tool4

- Measures mild subjective feelings of tiredness to debilitating and sustained feelings of exhaustion, with lower scores reflecting less fatigue^{4.5}
- Has been utilized to assess fatigue and fatigability in the Cure SMA database, but has not been fully validated in SMA $^{\rm 5}$

3 ESBBT (Fatigability): Measure of how fast a patient fatigues

Muscle endurance measurement tool⁶

- Part of a series of endurance shuttle tests that include: nine-hole peg test, box and block test, and walk test (ESNHPT, ESBBT, and ESWT)⁶
- Patients are asked to move blocks individually from one box to another in one minute, with higher numbers of blocks suggesting higher muscle endurance⁶
- The endurance shuttle tests have been validated for use in patients with SMA⁷

ADL, activities of daily living: ESBBT, endurance shuttle box and block test; ESNHPT, endurance shuttle nine-hole peg test; ESWT, endurance shuttle walk test; PEDI-CAT, pediatric evaluation of disability inventory computer adaptive test; PROMIS, patient-reported outcomes measurement information system; PRO(s), patient-reported outcome(s); SMA, spinal muscular atrophy. 1. Cre Care PEDI-CAT. Accessed April 26, 2022. https://www.pediat.accm/2. Data on file: Scholar Rock. 2022. 3 https://www.pediat.accm/2. Data on file: Scholar Rock. 2022. 3 https://commonfund.nih.gov/promis/index, 5. BelterL. et al. Orphanet Journal of Rare Diseases. 2020;15:217.6. Cure SMA. Best Practices for Physical Therapists and Clinical Evaluators in Spinal Muscular Atrophy (SMA). 2021. Available at: https://www.curesma.org/wp-content/uploads/2021/09/Clinical-Evaluators-Best-Practices-13-August-2021.pdf. 7. Bartels B, et al. Orphanet Journal of Rare Diseases. 2020;15:78.

Non-Ambulatory Patients Showed Continuous Improvements in ADL and Fatigue Measures Over 24 Months of Apitegromab Treatment^{1,2}

Tertiary Endpoints: Improvements in ADL and Fatigue

(Improvement

ADL Mean change in PEDI-CAT activities

MOBILITY
Mean change in
PEDI-CAT mobility

PARENT FATIGUE Mean change in PROMIS parent

Non-Ambulatory Type 2

≥2 years

nusinersen initiated before 5 years of age (95% CI) **12** MONTH

Apitegromab treatment in non-ambulatory type 2 resulted in patients improving in patient-reported outcomes related to self-sufficiency and fatigue

ADL, activities of daily living; PEDI-CAT, the Pediatric Evaluation of Disability Inventory computer adaptive test; PROMIS, Patient-Reported Outcome Measurement Information System. 1. Crawford T et al. P.102. Apitegromab in SMA: An analysis of multiple efficacy endpoints in the TOPAZ extension study Neuromuscular Disorders.2022; 32 (SUPPLEMENT 1): S86-S87; 2. Crawford T et al. P.102. Apitegromab in SMA: An analysis of multiple efficacy endpoints in the TOPAZ extension study; Poster Presented and Poster Highlights Podium Presentation presented WMS October 2022. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular altrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Non-Ambulatory Patients Showed Stabilization or Improvements in ADL and Fatigue Measures over 24 Months of Apitegromab Treatment^{1,2}

Tertiary Endpoints: Improvements in ADL and Fatigue

⟨✓ Improvement

ADL

Mean change in

PEDI-CAT activities

PARENT FATIGUE Mean change in PROMIS parent ADULT
FATIGUE
Mean change in
PROMIS adult

Non-Ambulatory Type 2/3

5-21 years

nusinersen initiated after 5 years of age (95% CI) **12** MONTH

Apitegromab treatment in non-ambulatory types 2 and 3 resulted in patients improving in patient-reported outcomes related to self-sufficiency and fatigue

ADL, activities of daily living; PEDI-CAT, the Pediatric Evaluation of Disability Inventory computer adaptive test; PROMIS, Patient-Reported Outcome Measurement Information System. 1. Crawford T et al. P.102. Apitegromab in SMA: An analysis of multiple efficacy endpoints in the TOPAZ extension study Neuromuscular Disorders. 2022: 32 (SUPPLEMENT 1): S86-S87; 2. Crawford T et al. P.102. Apitegromab in SMA: An analysis of multiple efficacy endpoints in the TOPAZ extension study; Poster Presented and Poster Highlights Podium Presentation presented WMS October 2022. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Non-Ambulatory Patients Continued to Improve in Fatigability and Endurance Measures, Which May be Complementary to Upper Limb Function Improvements over 24 Months¹

Tertiary Endpoints: Improvements in Fatigability

(Improvement

ENDURANCE

Mean change in

ESBBT activities

Non-Ambulatory Type 2/3

5-21 years

nusinersen initiated before 5 years of age (95% CI)

- The ESBBT is the first validated and sensitive fatigability test for proximal arm function in SMA and may be complementary to outcome measures that focus on arm motor function such as the RULM, by adding the dimension of endurance²
- Trends of improvements with ESBBT correlate with RULM over 24 months

Apitegromab treatment in non-ambulatory types 2 and 3 (cohort 2) resulted in patients improving in QoL assessments related to self-sufficiency and endurance

ESBBT. endurance shuttle box and block test: SMA, spinal muscular atrophy; SMN, survival motor neuron; QoL., quality of life. 1. Darras BT. et al. Apitegromab in SMA (TOPAZ trial): Efficacy, Safety, and PK/PD Assessments From 24-Month Data; Podium Presentation presented at SMAEU; October 2022. 2. Mazzone ES, et al. RULM for SMA: development of a new module. Muscle Nerve. 2017;55(6):869-74. Baseline is defined as the last measurement prior to the first dose of study drug, Subject visits after an intercurrent event of 3 consecutive missed doses during the Extension A period, or after taking nusinersen for SMN up-regulator therapy if in Cohort1, are excluded from the Efficacy Eligible Set. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Therapeutic Potential of Apitegromab Observed in the Ambulatory Type 3 SMA Cohort at 24 Months¹⁻⁴

Ambulatory Patients (Revised Hammersmith Scale; RHS)

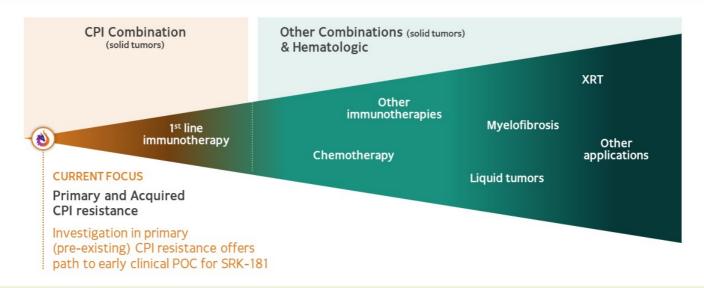
24-Month Analysis	20 mg/kg pooled ¹ (n=21)	20 mg/kg Monotherapy ⁴ (n=11)	20 mg/kg + nusinersen ^{2,3} (n=10)
Mean change from baseline, (95% CI)	-1.8 (-4.7, 1.1)	-2.8 (-8.4, 2.8)	-0.7 (-3.1, 1.7)
Patients achieving ≥ 1-pt increase, n (%)	9/21 (42.9%)	5/11 (45.5%)	4/10 (40%)
Patients achieving ≥ 3-pt increase, n (%)	5/21 (23.8%)	3/11 (27.3%)	2/10 (20%)

Observed Case Analysis includes all patients who had a valid measurement at E14 (Day 728). Inclusive of data from 3 patients in apitegromab monotherapy who lost ability to ambulate. 1. Crawford T et al. TOPAZ EXTENSION: 24-MONTH EFFICACY AND SAFETY OF APITEGROMAB IN PATIENTS WITH LATER-ONSET SPINAL MUSCULAR ATROPHY (TYPE 2 AND TYPE 3 SMA) Podium Presentation Presented at CureSMA; June 2022. 2. Crawford T et al. P.102. Apitegromab in SMA: An analysis of multiple efficacy endpoints in the TOPAZ extension study Neuromuscular Disorders.2022, 32 (SUPPLEMENT 1): S86-S87. 3. Crawford T et al. P.102. Apitegromab in SMA: An analysis of multiple efficacy endpoints in the TOPAZ extension study. Poster Presented and Poster Highlights Podium Presentation presented WIMS October 2022. 4. Data on File, Scholar Rock Inc. 2022. Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.

Overall Safety and Tolerability Profile Over 24 Months of Treatment: Serious TEAEs

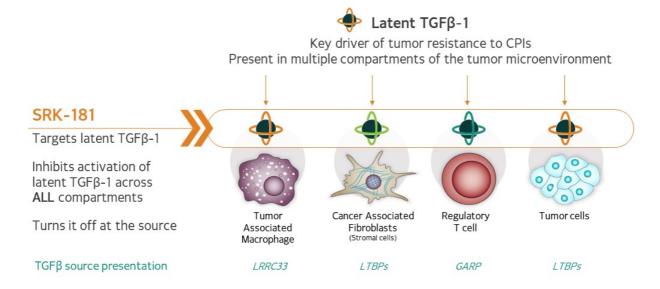
- Fourteen patients experienced a serious TEAE, all assessed by the respective trial investigator as unrelated to apitegromab:
 - One patient treated with 2 mg/kg dose (Cohort 3) was hospitalized due to adenoidal hypertrophy and tonsillar hypertrophy to perform scheduled adenotonsillectomy (Grade 2). Events resolved without sequelae.
 - Two patients treated with 20 mg/kg dose (both Cohort 1) presented with gait inability considered a significant disability (both Grade 3). Events remain ongoing.
 - One patient treated with 20 mg/kg dose (Cohort 1) was hospitalized with post lumbar puncture syndrome (Grade 2). Event resolved without sequelae.
 - One patient treated with 20 mg/kg dose (Cohort 1) was hospitalized due to viral upper respiratory tract infection (Grade 2). Event resolved without sequelae.
 - Five patients treated with 20 mg/kg dose (one from Cohort 1, three from Cohort 2, and one from Cohort 3) were hospitalized for spinal fusion surgery/ scoliosis/ scoliosis surgery (all Grade 3). All events resolved without sequelae.
 - One patient treated with 20 mg/kg dose (Cohort 1) was hospitalized due to bilateral developmental hip dysplasia and left hip dislocation (both Grade 3). Events resolved without sequelae.
 - One patient treated with 2 mg/kg dose (Cohort 3) was hospitalized due to hip dislocation (Grade 3). Event resolved with sequelae (anxiety and post-operative pain).
 - One patient treated with 20 mg/kg dose (Cohort 3) was hospitalized due to respiratory syncytial virus infection (Grade 2). Events
 resolved without sequelae.
 - One patient treated with 2 mg/kg dose (Cohort 3) was hospitalized due to vomiting and pneumonia (Grade 3). Events resolved without sequelae.

Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.


Overall Safety and Tolerability Profile Over 24 Months of Treatment: Non-Serious Grade 3 Events

- Four patients presented with non-serious Grade 3 events, all assessed by the respective trial investigator as unrelated to apitegromab:
 - One patient treated with 20 mg/kg dose (Cohort 1) presented with post lumbar puncture syndrome. Event resolved without sequelae.
 - One patient treated with 20 mg/kg dose (Cohort 2) presented with worsening of scoliosis. Event resolved (with surgery, reported as serious, above) without sequelae.
 - One patient treated with 20 mg/kg dose (Cohort 2) presented with osteopenia. Events remains ongoing.
 - One patient treated with 2 mg/kg (Cohort 3) presented with two instances of hypoglycemia and one instance of metabolic acidosis. All events resolved without sequelae.
 - One patient (Cohort 1) discontinued from the trial due to Grade 2 muscle fatigue that started prior to initiation of dosing with study drug; assessed by the trial investigator as unrelated to apitegromab.

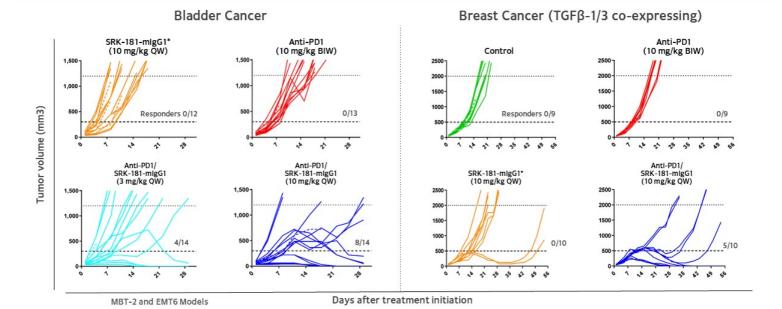
Apitegromab is an investigational drug candidate being evaluated for the treatment of spinal muscular atrophy. Apitegromab has not been approved for any use by the US FDA or any other health authority, and its safety and efficacy have not been established.


SRK-181: Transformative Potential as the Backbone For Next Era of Cancer Therapy

First in class monoclonal antibody targeting latent and context-independent binding to TGFB-1

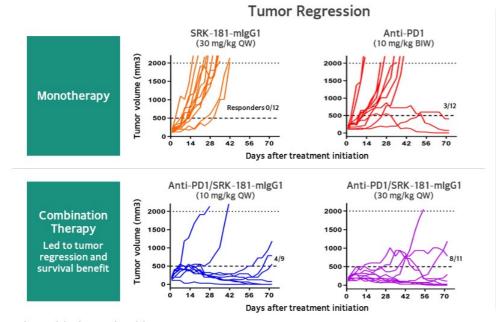
Context-Independent: SRK-181 Inhibits Latent TGFβ-1 Across All Compartments of the Tumor Microenvironment

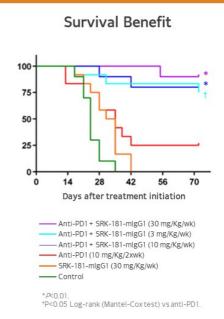
 $LRRC33: \ leucine-rich-repeat-containing \ protein \ family \ member \ 33 \ |\ LTBPs: \ latent \ transforming \ growth \ factor \ \beta \ binding \ proteins \ |\ GARP: \ glycoprotein \ A \ repetitions \ predominant \ protein \ p$


SRK-181 Therapeutic Hypothesis: Potential Advantages of Latent TGFβ-1 Inhibitor

	SRK-181*	Bifunctional TGFβ/CPI	ALK5 Inhibitor	Nonselective TGFβ antibody
Selectivity for TGFβ-1: potential for wider therapeutic window and improved safety	Ø	X	8	×
Ability to combine with any anti-PD-(L)1	Ø	X		
Ability to optimize dosing of each component of combination therapy	Ø	8	Ø	Ø
Activity spatially distinct from anti-PD-(L)1 in tissue	Ø	&	Ø	Ø
Inhibits all sources of TGF β -1 contributing to CPI resistance (Context independent)	Ø	&	Ø	Ø
Target latent form (Blocks TGFβ-1 activation)	②	&	&	X

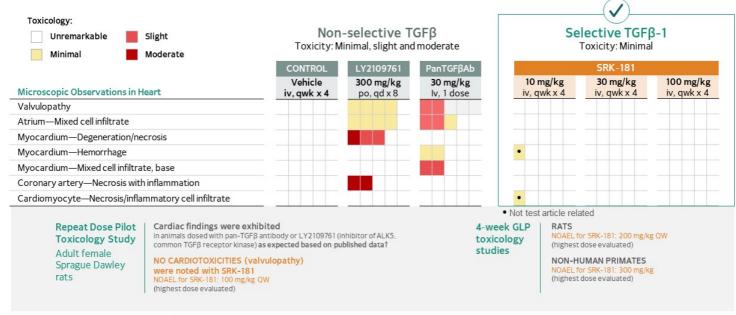
*SRK-181 is an investigational product candidate currently being evaluated in DRAGON phase 1 clinical trial. The efficacy and safety of SRK-181 have not been established.


$TGF\beta$ -1 Blockade with SRK-181-mlgG1 Rendered Preclinical Tumor Models Susceptible to Anti-PD1 Therapy



Preclinical data published in Science Translational Medicine. Martin CJ, et al. Sci Transl Med. 2020 Mar 25;12(536):eaay8456. https://scholarrock.com/platform/publications/. *SRK-181-mlgG1 is the murine version of SRK-181; responder defined as tumor size <25% endpoint volume at study end.

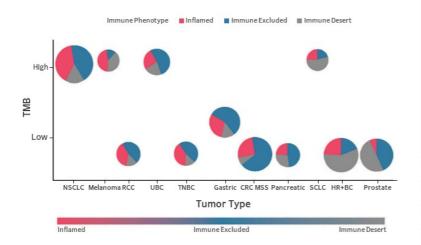
SRK-181-mlgG1 Combination Treatment Led to Melanoma **Tumor Regression and Survival Benefit**



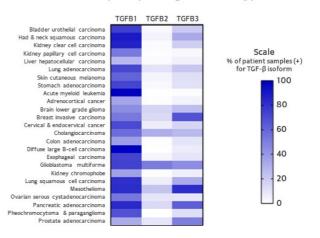
Melanoma (Cloudman 591) model

Preclinical data published in Science Translational Medicine. Martin C.J. et al. Sci Transl Med. 2020 Mar 25;12(536);eaay 8456. https://scholarrock.com/platform/publications.

Selectivity of SRK-181 Offers Potential to Overcome Toxicity and Dose-limiting Challenges of Non-selective TGFβ Pathway Approaches


Preclinical data published in Science Translational Medicine. Martin CJ, et al. Sci Transl Med 2020 Mar 25;12(536): eaay 8456.

*Source: Anderton MJ, et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. *Toxicol Pathol.* 2011;39: 916-924.; and Stauber AJ, et al. Nonclinical safety evaluation of a transforming growth factor β Receptor I kinase inhibitor in Fischer 344 rats and beagle dogs. *J Clin Pract.* 2014: 4:3.



Emerging Evidence Implicates $\mathsf{TGF}\beta\text{--}1$ as Driving Primary Resistance to Checkpoint Inhibitors

Substantial % of Solid Tumors Exhibit Immune Exclusion

Cancer Genome Atlas RNAseq Analysis of >10,000 Samples Spanning 33 Tumor Types*

Human Tumor Analyses Reveal TGFβ-1 as Most Likely Driver of TGFβ Signaling Pathway in Cancers

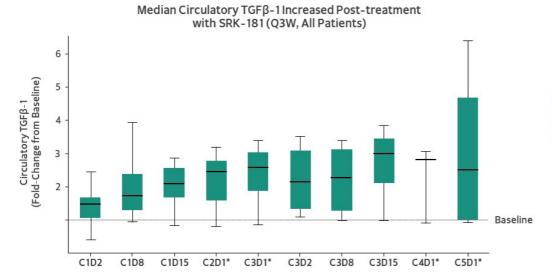
[†]Priti H. et al. Top 10 challenges in cancer immunotherapy. *Immunity*. 2020 Jan 14:52(1):17-35. https://doi.org/10.1016/j.immuni.2019.12.011. *Source: National Cancer Institute - Cancer Genome Atlas Program.

Biomarker Strategies Employed in DRAGON Trial

Multiple tissue-based and circulating biomarker analyses to be evaluated in DRAGON study

Immunophenotyping Assessment of immune landscape

- · Higher resolution histochemical characterization of tumor immune contexture (e.g. CD8+)
 - Classification of inflamed, excluded or immune desert tumors and tumor nests
 - Ability of SRK-181 to overcome tumor immune exclusion
- Analysis of immune response markers (e.g. PD-L1)
- · Changes to intra-tumoral and/or circulating immune cell contexture (MDSC)



TGFβ-1 pathway evaluation Assessment of signaling pathway

- · Show evidence of the SRK-181 target engagement
 - e.g. circulating TGFβ-1 levels
- TGFβ pathway modulation:
 - e.g. Histochemical analysis of pSMAD
 - e.g. RNA-based TGFβ gene signatures and pathway analyses
- · Paired biopsies from the head and neck cohort allow for a potential to accelerate the development path

Clear Evidence of Target Engagement
Pharmacodynamic Biomarker Results for Part A: Circulatory TGFβ-1

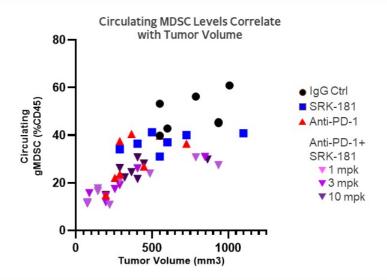
Binding to latent TGFβ-1 delays maturity state allowing TGFβ-1 to accumulate in system

Combination treatment with pembrolizumab did not appear to impact circulatory TGFβ-1 levels

Yap T et al. SRK-181. a latent TGFB1 inhibitor: safety, efficacy, and biomarker results from the dose escalation portion of a phase I trial (DRAGON trial) in patients with advanced solid tumors (Poster 780): Presented at STC, Nov. 10-11, 2022. Circulatory TGFB-1 and PF4 levels were quantitated by using validated ELISA kits from R&D System.12 Because platelet activation during sample processing can lead to elevated TGFB-1 levels, samples with elevated PF4. a platelet activation biomarker, were excluded from the analysis based on a preliminary cutoff value.

SPK_181 is an investigation of the constitution of the constitu

Fre-incusion.
SRK-181 is an investigational drug candidate that is being evaluated for the treatment of cancer. SRK-181 has not been approved by the US FDA or any other health authority, and its safety and efficacy have not been established.


Preclinical Data Provide Scientific Rationale to Evaluate Peripheral Samples for Evidence of SRK-181 Activity

Immunophenotyping

Assessment of immune landscape

Measurement of MDSCs in circulation may provide indirect evidence of drug action on the tumor

- Myeloid-derived suppressor cells (MDSCs) have immune suppressive functions
- SRK-181 plus anti-PD1 combination drive MDSC levels down significantly in the tumor microenvironment
- Reductions in circulating MDSC levels correlate with reduced tumor volume following SRK-181 and anti-PD1 treatment in MBT-2 tumor model

Both tumoral and circulatory MDSC are being evaluated in the DRAGON study

MBT-2 bladder tumor model igG, anti-PD-1 and SRK-181-migG1 dosed d1, d7 Analysis on day 10 $\,$

Scholar Rock Provides Corporate Update and Highlights Priorities for 2023

- Pivotal Phase 3 SAPPHIRE trial enrollment completion expected in 2023

- Phase 1 DRAGON trial of SRK-181 continues to advance with presented data that showed early indications of efficacy; ongoing clinical data updates planned in 2023

- Anticipated cash runway into 2025

CAMBRIDGE, Mass.-(BUSINESS WIRE)-January 9, 2023--Scholar Rock (NASDAQ: SRRK), a Phase 3 clinical-stage biopharmaceutical company focused on the treatment of serious diseases in which protein growth factors play a fundamental role, today provided recent corporate updates and highlighted upcoming priorities for its pipeline programs in 2023.

"In 2022, Scholar Rock made significant progress in advancing its clinical programs, notably with the 24-month extension data from the Phase 2 TOPAZ trial, which reinforces our conviction behind apitegromab and the Phase 3 SAPPHIRE trial, and with early data readouts from the Phase 1 DRAGON trial. The company also strengthened its financials in June 2022 with a substantial equity raise. We are excited by the potential coming from our highly differentiated platform targeting growth factors like TGFβ, as we advance our spinal muscular atrophy and oncology programs to address critical unmet needs for patients," said Dr. Jay Backstrom, M.D., M.P.H., President & CEO of Scholar Rock. "In 2023, we see continued momentum for our growing pipeline, including completing enrollment of our pivotal SAPPHIRE trial, disclosing 36-month extension data from the Phase 2 TOPAZ trial and clinical and biomarker updates from the SRK-181 Phase 1 DRAGON trial, and advancing two preclinical assets towards IND-enabling studies in fibrosis and iron-restricted anemia."

2023 Priorities:

Apitegromab is a selective inhibitor of myostatin activation being developed as the potential first muscle-targeted therapy for the treatment of spinal muscular atrophy (SMA).

- Complete enrollment of Phase 3 SAPPHIRE clinical trial in 2023. SAPPHIRE is a randomized, double-blind, placebo-controlled clinical trial evaluating apitegromab for patients with nonambulatory Types 2 and 3 SMA on either nusinersen or risdiplam. The last patient is expected to be enrolled in SAPPHIRE in 2023, with the top-line data readout expected in 2024. If successful, the company expects to initiate a commercial product launch in 2025.
- Progress TOPAZ long-term extension to 36-month data readout. The company expects to report 36-month extension data in the first half of 2023. As of December 31, 2022, approximately 90 percent of patients (51/57) remained enrolled in the trial's long-term extension period.

SRK-181 is an investigational selective inhibitor of latent TGFB-1 activation and is being developed with the aim of overcoming resistance to checkpoint therapy in patients with advanced cancer.

. Advance Progress in DRAGON Phase 1 trial. Scholar Rock is expecting to provide biomarker and clinical updates from the DRAGON Phase 1 trial in 2023.

- Advance the fibrosis program towards IND-enabling studies. Scholar Rock plans to advance a highly potent, anti-latent TGF\beta-1 antibody that selectively inhibits TGF\beta activation within the extracellular matrix by targeting latent TGFβ-1 associated with latent TGFβ-binding proteins (LTBPs), thus enabling specific inhibition of TGFβ-1 in fibrotic tissue
- Advance the iron-restricted anemia program towards IND-enabling studies. Scholar Rock plans to advance a highly selective, RGMc/HJV antibody that targets the signaling of BMP6, a key regulator of iron availability in the body. Utilizing Scholar Rock's unique structural biology insights into BMP6 and its co-receptors and leveraging its novel antibody discovery and optimization platform, the company generated an anti-RGMc antibody that can modulate iron release and has the potential to address anemia.

2022 Highlights:

- TOPAZ 24-month extension trial data showed sizeable and sustained gains in Hammersmith Functional Motor Scale Expanded (HFMSE), increased Revised Upper Limb Module (RULM), and positive trends in quality-of-life data for nonambulatory patients with Types 2 and 3 SMA receiving an SMN-targeted therapy.
- Completed equity financing of \$205 million in June. As of December 31, 2022, Scholar Rock had cash, cash equivalents, and marketable securities of approximately \$315 million, which is expected to fund the company's
- Phase 1 DRAGON trial data presented at the Society for Immunotherapy of Cancer's Annual Meeting in November showed that SRK-181 continued to be generally well tolerated with early indications of efficacy (as of the data cut-off date of August 29, 2022).
- Presented new data on LTBP showing reduction of TGFβ-1 signaling and fibrosis in relevant in vivo preclinical models. The findings were presented at the 2022 FASEB Science Research Conference in July and the American College of Toxicology Annual Meeting in November.

 Announced Jay Backstrom, M.D., M.P.H. was appointed President & CEO in October, bringing an exceptional range of research and development, regulatory, and leadership experience spanning several decades in the
- biopharmaceutical industry.
- Announced Jing L. Marantz, M.D., Ph.D., M.B.A., was appointed Chief Medical Officer in November. Dr. Marantz is an accomplished biopharmaceutical executive with over 20 years of industry experience spanning multiple specialties, including neurology, hematology/oncology, and rare diseases

"With our strong balance sheet and two well established clinical programs, both of which we expect to generate data in 2023, Scholar Rock is uniquely positioned to bring differentiated therapies to patients suffering from serious diseases in which protein growth factors play a fundamental role," said Ted Myles, Chief Operating Officer and Chief Financial Officer.

About Scholar Rock

Scholar Rock is a clinical-stage biopharmaceutical company focused on the discovery and development of innovative medicines for the treatment of serious diseases in which signaling by protein growth factors plays a fundamental role. Scholar Rock is creating a pipeline of novel product candidates with the potential to transform the lives of patients suffering from a wide range of serious diseases, including neuromuscular disorders, cancer, and fibrosis. Scholar Rock's approach to targeting the molecular mechanisms of growth factor activation enabled it to develop a proprietary platform for the discovery and development of monoclonal antibodies that locally and selectively target these signaling proteins at the cellular level. By developing product candidates that act in the disease microenvironment, the Company intends to avoid the historical challenges associated with inhibiting growth factors for therapeutic effect. Scholar Rock believes its focus on biologically validated growth factors may facilitate a more efficient development path. For more information, please visit www.ScholarRock.com or follow Scholar Rock on Twitter (@ScholarRock) and LinkedIn (https://www.linkedin.com/company/scholar-rock/).

Availability of Other Information About Scholar Rock

Investors and others should note that we communicate with our investors and the public using our company website www.scholarrock.com, including, but not limited to, company disclosures, investor presentations and FAQs, Securities and Exchange Commission filings, press releases, public conference call transcripts and webcast transcripts, as well as on Twitter and LinkedIn. The information that we post on our website or on Twitter or LinkedIn could be deemed to be material information. As a result, we encourage investors, the media and others interested to review the information that we post there on a regular basis. The contents of our website or social media shall not be deemed incorporated by reference in any filing under the Securities Act of 1933, as amended.

Scholar Rock® is a registered trademark of Scholar Rock, Inc.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, statements regarding Scholar Rock's expectations, plans and prospects, including without limitation, Scholar Rock's expectations regarding its growth, strategy, progress and timing of its clinical trials for apitegromab, SRK-181, and other product candidates and indication selection and development timing, its cash runway, the ability of any product candidate to perform in humans in a manner consistent with earlier nonclinical, preclinical or clinical trial data, and the potential of its product candidates and proprietary platform. The use of words such as "may," "might," "could," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify such forward-looking statements. All such forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, without limitation, that preclinical and clinical data, including the results from the Phase 2 clinical trial of apitegromab, or Part A of the Phase 1 clinical trial of SRK-181, are not predictive of, may be inconsistent with, or more favorable than, data generated from future clinical trials of the same product candidates including, without limitation, the Phase 3 clinical trial of apitegromab in SMA or Part B of the Phase 1 clinical trial of SRK-181, Scholar Rock's ability to provide the financial support, resources and expertise necessary to identify and develop product candidates on the expected timeline, the data generated from Scholar Rock's nonclinical and preclinical studies and clinical trials, information provided or decis

Contacts

Scholar Rock:

Investors Rushmie Nofsinger Scholar Rock rnofsinger@scholarrock.com ir@scholarrock.com 857-259-5573

Media

Ariane Lovell
Finn Partners
ariane.lovell@finnpartners.com
media@scholarrock.com
917-565-2204